


 Using the listNode structure again, the pseudocode on the next slide shows an 
algorithm for finding a new node’s proper position in the list and inserting there.

 The algorithm assumes the nodes in the list are already in order. 

2



3

Create a new node.

Store data in the new node.

If there are no nodes in the list

Make the new node the first node.

Else

Find the first node whose value is greater than or 

equal

the new value, or the end of the list (whichever is first).

Insert the new node before the found node, or at the 

end of

the list if no node was found.

End If.



4

The code for the traversal algorithm is shown below. (As before, num holds the 

value being inserted into the list.)

// Initialize nodePtr to head of list

nodePtr = head;

// Skip all nodes whose value member is less

// than num.

while (nodePtr != NULL && nodePtr->value < num)

{

previousNode = nodePtr;

nodePtr = nodePtr->next;

}

The entire insertNode function begins on the next slide.



5

void FloatList::insertNode(float num)

{

ListNode *newNode, *nodePtr, *previousNode;

// Allocate a new node & store Num

newNode = new ListNode;

newNode->value = num;

// If there are no nodes in the list

// make newNode the first node

if (!head)

{

head = newNode;

newNode->next = NULL;

}

else // Otherwise, insert newNode.

{

// Initialize nodePtr to head of list

nodePtr = head;

// Skip all nodes whose value member is less

// than num.

while (nodePtr != NULL && nodePtr->value < num)

{

previousNode = nodePtr;

nodePtr = nodePtr->next;

} Continued on next slide…



6

// If the new mode is to be the 1st in the list,

// insert it before all other nodes.

if (!previousNode)

{

head = newNode;

newNode->next = nodePtr;

}

else

{

previousNode->next = newNode;

newNode->next = nodePtr;

}

}
}

Continued from previous slide.



7

// This program calls the displayList member function.

// The function traverses the linked list displaying

// the value stored in each node.

#include <iostream.h>

#include "FloatList.h”

void main(void)

{

FloatList list;

// Build the list

list.appendNode(2.5);

list.appendNode(7.9);

list.appendNode(12.6);

// Insert a node in the middle

// of the list.

list.insertNode(10.5);

// Dispay the list

list.displayList();

}



8

2.5

7.9

10.5

12.6



9

In insertNode, a new node is created and the function argument is copied to its 

value member. Since the list already has nodes stored in it, the else part of the 

if statement will execute. It begins by assigning nodePtr to head. 



10

Since nodePtr is not NULL and nodePtr->value is less than num, the while

loop will iterate. During the iteration, previousNode will be made to point to the 

node that nodePtr is pointing to. nodePtr will then be advanced to point to the 

next node. 



11

Once again, the loop performs its test. Since nodePtr is not NULL and nodePtr-

>value is less than num, the loop will iterate a second time. During the second 

iteration, both previousNode and nodePtr are advanced by one node in the 

list.



12

This time, the loop's test will fail because nodePtr is not less than num. The 

statements after the loop will execute, which cause previousNode->next to 

point to newNode, and

newNode->next to point to nodePtr. 

If you follow the links, from the head pointer to the NULL, you will see that the 

nodes are stored in the order of their value members.



 Deleting a node from a linked list requires two steps:

 Remove the node from the list without breaking the links created by the next pointers

 Deleting the node from memory

 The deleteNode function begins on the next slide.

13



14

void FloatList::deleteNode(float num)

{

ListNode *nodePtr, *previousNode;

// If the list is empty, do nothing.

if (!head)

return;

// Determine if the first node is the one.

if (head->value == num)

{

nodePtr = head->next;

delete head;

head = nodePtr;

}

Continued on next slide…



15

else

{

// Initialize nodePtr to head of list

nodePtr = head;

// Skip all nodes whose value member is 

// not equal to num.

while (nodePtr != NULL && nodePtr->value != num)

{

previousNode = nodePtr;

nodePtr = nodePtr->next;

}

// Link the previous node to the node after

// nodePtr, then delete nodePtr.

previousNode->next = nodePtr->next;

delete nodePtr;

}

}

Continued from previous slide.



16

// This program demonstrates the deleteNode member function

#include <iostream.h>

#include "FloatList.h“

void main(void)

{

FloatList list;

// Build the list

list.appendNode(2.5);

list.appendNode(7.9);

list.appendNode(12.6);

cout << "Here are the initial values:\n";

list.displayList();

cout << endl;

cout << "Now deleting the node in the middle.\n";

cout << "Here are the nodes left.\n";

list.deleteNode(7.9);

list.displayList();

cout << endl; Continued on next slide…



17

cout << "Now deleting the last node.\n";

cout << "Here are the nodes left.\n";

list.deleteNode(12.6);

list.displayList();

cout << endl;

cout << "Now deleting the only remaining node.\n";

cout << "Here are the nodes left.\n";

list.deleteNode(2.5);

list.displayList();

}

Continued from previous slide.



18

Program Output

Here are the initial values:

2.5

7.9

12.6

Now deleting the node in the middle.

Here are the nodes left.

2.5

12.6

Now deleting the last node.

Here are the nodes left.

2.5

Now deleting the only remaining node.

Here are the nodes left.



19

Look at the else part of the second if statement. This is where the function will 

perform its action since the list is not empty, and the first node does not contain 
the value 7.9. Just like insertNode, this function uses nodePtr and 

previousNode to traverse the list. The while loop terminates when the value 7.9 

is located. At this point, the list and the other pointers will be in the state 

depicted in the figure below.



20

next, the following statement executes.

previousNode->next = nodePtr->next;

The statement above causes the links in the list to bypass the node that nodePtr 

points to. Although the node still exists in memory, this removes it from the list.

The last statement uses the delete operator to complete the total deletion of 

the node.



 The class's destructor should release all the memory used by the list. 

 It does so by stepping through the list, deleting each node one-by-one. The code is 
shown on the next slide.

21



22

FloatList::~FloatList(void)

{

ListNode *nodePtr, *nextNode;

nodePtr = head;

while (nodePtr != NULL)

{

nextNode = nodePtr->next;

delete nodePtr;

nodePtr = nextNode;

}

}

Notice the use of nextNode instead of previousNode. The nextNode pointer is 

used to hold the position of the next node in the list, so it will be available after 
the node pointed to by nodePtr is deleted.



23

Advantages:

 Convenient to traverse the list backwards.

 Simplifies insertion and deletion because you no 

longer have to refer to the previous node.

Disadvantage:

 Increase in space requirements.



24

 Last node references the first node

 Every node has a successor

 No node in a circular linked list contains NULL



25

 Circular doubly linked list

 prev pointer of the dummy head node points to the last node

 next reference of the last node points to the dummy head node

 No special cases for insertions and deletions


